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Abstract

In this paper, we develop a numerical method to solve Boltzmann like equations of kinetic theory which is able to cap-
ture the compressible Navier–Stokes dynamics at small Knudsen numbers. Our approach is based on the micro/macro
decomposition technique, which applies to general collision operators. This decomposition is performed in all the phase
space and leads to an equivalent formulation of the Boltzmann (or BGK) equation that couples a kinetic equation with
macroscopic ones. This new formulation is then discretized with a semi-implicit time scheme combined with a staggered
grid space discretization. Finally, several numerical tests are presented in order to illustrate the efficiency of our approach.
Incidentally, we also introduce in this paper a modification of a standard splitting method that allows to preserve the com-
pressible Navier–Stokes asymptotics in the case of the simplified BGK model. Up to our knowledge, this property is not
known for general collision operators.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The most known kinetic model for rarefied gases is the well-known Boltzmann equation (see [5] for
instance). A dimensionless form of this equation is written as
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where f ðt; x; vÞ is the distribution function which depends on time t P 0, on the position of particles x 2 Rd

and on their velocity v 2 Rd . The parameter e is the Knudsen number which measures the degree of rar-
efaction and is proportional to the mean free path. Finally, Q is a non-linear collision operator describing
interactions between particles. It generally acts on the velocity dependence of f only. When the number of
collisions becomes very large, the mean free path (the distance travelled by a particle between two colli-
sions) becomes small as compared to a characteristic length of the physical domain under consideration.
In this regime a macroscopic description of the gas is more adapted. Fundamental examples are compress-
ible Euler and compressible Navier–Stokes (CNS) equations, which describe the evolution of averaged
quantities as the local density, momentum and energy of the gas. The CNS model is more accurate than
the Euler equations because it gives a correction of order e by involving terms such as viscosity and heat
conductivity. However, physically, such classical fluid models could be insufficient to correctly describe the
macroscopic evolution of the gas, especially when it is far from equilibrium. Fluid models like the com-
pressible Euler or CNS type are classically derived using the moment method in combination with pertur-
bation methods such as Hilbert or Chapman–Enskog expansions [5,6]. In particular, the derivation of the
CNS model from Boltzmann equation in fluid regime yields an approximation of viscosity and heat fluxes
in the gas up to terms of the order of e2.

The general context of this paper is the development of numerical schemes for solving the Boltzmann equa-
tion that are uniformly stable along the transition from kinetic regime to the fluid regime. Indeed, this prop-
erty plays an important role in practical applications: plasma physics, aerospatial technology, semiconductors,
neutron transport and many others. The main difficulty is due to the term 1

e which becomes stiff when e is close
to zero (fluid regime). In this case, solving the Boltzmann equation by a standard explicit numerical scheme
requires the use of a time step of the order of e, which leads to very expensive numerical computations for
small e. To avoid this difficulty, it is necessary to use an implicit or semi-implicit time discretization for the
collision part. However, due to the complicated structure of the Boltzmann collision operator, the construc-
tion of suitable implicit schemes is still a numerical challenge. In fact, such numerical schemes should also have
a correct asymptotic behavior: for small parameter e, the schemes should degenerate into a good approxima-
tion of the fluid asymptotics (Euler or CNS equations) of the Boltzmann equation. This property is often
called asymptotic preserving property.

At the level of the Euler asymptotics, many authors have proposed asymptotic preserving numerical
approximations for solving the Boltzmann equation. For example, numerical schemes able to capture the cor-
rect Euler limit have been proposed in [8] in the case of the BGK equation, and then for more general kinetic
equations in [16,14,3,28,29]. The case of the diffusion scaling has also been investigated in a series of works, see
[18,19,21,17,15,27]. In the same spirit, we also mention the work on the incompressible Navier–Stokes limit
developed in [20].

Many numerical methods for kinetic equations are based on a splitting method which consists in solving
the collision and the transport part separately. For the BGK model, it is known (see [8]) that an exact
solving of the collision part allows to obtain a correct Euler limit when e goes to zero. Here, we propose
in this paper a slight modification of this method allowing to also capture the CNS asymptotics corre-
sponding to the BGK model. In the case of the quadratic Boltzmann operator, the Euler asymptotic pre-
serving property can be ensured using the so-called Wild sums [14,28,29]. However, it seems that this
method is not able to capture the CNS asymptotics for small e. In fact, up to our knowledge there is
no numerical work treating the CNS asymptotics of a kinetic model, even for simplified models like the
BGK equation.

We mention that another strategy to decrease the computational cost of a kinetic simulation consists in
coupling the Boltzmann equation with fluid models (Euler, Navier–Stokes, or diffusion model) (see [23,9–
11] for example). This strategy is based on a domain decomposition aiming at solving kinetic and macroscopic
equations simultaneously on different subdomains. However, the efficiency of such techniques can be
improved by using asymptotic preserving schemes, in particular near the interface (see [10]).

In this paper, we present a deterministic method based on a decomposition of the Boltzmann equation into
a system coupling a kinetic equation with a fluid one. The fluid part of this system degenerates, for small e, into
the CNS equations, up to Oðe2Þ, while the kinetic part remains uniformly stable with respect to e. We empha-
size that our approach does not need any approximation and any domain decomposition method neither for
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space variable nor for velocity. Our strategy is as follows. We decompose the distribution function
f ¼ f ðt; x; vÞ into the sum of its Maxwellian MðUÞ and g ¼ f�MðUÞ

e :
f ¼ MðUÞ þ eg; ð2Þ

where U is the vector of the first moments of f (density, momentum and energy):
U ¼
Z

Rd

1

v
1
2
jvj2

0
B@

1
CAf ðvÞdv ¼

q

qu
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2
qjuj2 þ d

2
qT

0
B@

1
CA; ð3Þ
and MðUÞ is defined as
MðUÞðvÞ ¼ q

ð2pT Þ
d
2

exp � jv� uj2

2T

 !
: ð4Þ
Inserting the micro–macro decomposition (2) into Eq. (1), we show that g and U must satisfy a coupled
system of equations which is equivalent to the original Boltzmann equation (1). This system is composed of
a kinetic equation on g and a macroscopic equation on U. As we will show in this paper, using a time
semi-implicit scheme on this formulation naturally leads to an asymptotic preserving scheme at the level
of the CNS asymptotics. Note that a similar approach has been proposed in [13] to design fluid models
with localized kinetic upscaling effects. But the construction of asymptotic preserving schemes was not
studied there.

We point out that our method extends to more general collision operators of Boltzmann type and that it
can be simply generalized to get asymptotic preserving schemes at higher orders in e (Burnett like approxima-
tions). Also note that our approach also applies to diffusion limits of kinetic equations as shown in [24].
Finally, we mention that some ideas presented in this paper have already been proposed in [22] for the con-
struction of asymptotic preserving schemes for the radiative heat transfer equation.

The outline of this paper is the following: in the next section, we present a brief review of the Boltzmann
and BGK equations, and their Euler and Navier–Stokes asymptotics. In Section 3, using the micro–macro
decomposition, we construct the equivalent system to the Boltzmann equation and prove formally that it gives
the CNS equations up to Oðe2Þ. Section 4 is concerned with the numerical approximation of such constructed
system, where the time and space discretizations are separately detailed. In Section 5, we review some other
standard numerical schemes used for solving the Boltzmann-BGK equation and discuss their properties
regarding the CNS asymptotics. Finally, we give in Section 6 several classical numerical tests in order to illus-
trate the efficiency of our method in a one-dimensional setting.

2. The Boltzmann equation and its fluid approximations

2.1. The Boltzmann equation

We consider the usual Boltzmann equation (see [4] for details) in the dimensionless form, with an initial
data
otf þ v � rxf ¼
1

e
Qðf ; f Þ; t > 0; ðx; vÞ 2 Rd � Rd ; ð5Þ

f ðt ¼ 0; x; vÞ ¼ f0ðx; vÞ; ð6Þ
where the collision operator Q is a bilinear functional and acts only on the velocity dependence of the distri-
bution function f. In all what follows, we use the notations
mðvÞ ¼ 1; v;
jvj2

2

 !T

; and hgi ¼
Z

Rd
gðvÞ dv ð7Þ
for any scalar or vector function g ¼ gðvÞ. The Boltzmann operator Qðf ; f Þ has important physical properties as
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1. local conservation of mass, momentum and energy
hmQðf ; f Þi ¼ 0; 8f P 0: ð8Þ

2. The entropy inequality
hQðf ; f Þ logðf Þi 6 0; 8f P 0:
3. The non-negative equilibrium functions f, i.e., such that Qðf ; f Þ ¼ 0, are the Maxwellian distributions given by
MðUÞðvÞ ¼ q

ð2pT Þ
d
2

exp � jv� uj2

2T

 !
; ð9Þ
where q, u and T are density, mean velocity and temperature associated to U by the relation
hmMðUÞi ¼ U ¼ q;qu;
1

2
qjuj2 þ d

2
qT

� �
: ð10Þ
Usually, to avoid the complexity of the Boltzmann collision operator, the simpler BGK model is considered
(see [5] for instance)
otf þ v � rxf ¼
1

es
ðMðUÞ � f Þ; ð11Þ
where U is the vector whose components are the first moments of f according to expression (3), and s is a relax-
ation time that may depend on q and T. Conservation of mass, momentum and energy as well as the entropy
inequality are readily satisfied by the BGK model. The Maxwellians are clearly the equilibrium functions asso-
ciated to the BGK collision operator.
2.2. Conservation laws and asymptotic fluid models

The physical conservation laws of mass, momentum and energy can be expressed from (5) by using the
moment method. For this, we multiply the Boltzmann equation (5) by the vector of locally conserved quan-
tities, i.e., by mðvÞ given by (7), and then integrate with respect to v. Using the conservation property of Q, this
gives:
othmf i þ rx � hvmf i ¼ 0:
This is equivalent to the following non-closed system of conservation laws
ot

q

qu

E

0
B@

1
CAþrx �

qu

qu� uþ P

Euþ PuþQ

0
B@

1
CA ¼ 0; ð12Þ
where E ¼ 1
2
qjuj2 þ d

2
qT is the energy, P ¼ hðv� uÞ � ðv� uÞf i is the pressure tensor, and Q ¼

1
2
hðv� uÞjv� uj2f i is the heat flux vector. When e goes to 0 in (5), the distribution function f tends to a local

Maxwellian MðUÞ. Therefore, system (12) can be approximated by a closed system on U by using expression
(9). Within this approximation, the pressure tensor P and the heat flux vector Q are given by
P ¼ pI ; Q ¼ 0;
where p ¼ qT is the pressure, and I is the identity matrix. Then (12) reduces to the usual compressible Euler
equations
ot

q

qu

E

0
B@

1
CAþrx �

qu

qu� uþ pI

ðE þ pÞu

0
B@

1
CA ¼ 0: ð13Þ
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It is well known that a first order correction (in e) to the Euler equations can be derived by using the classical
Chapman–Enskog expansion. This correction is nothing but the CNS system
ot

q

qu

E

0
B@

1
CAþrx �

qu

qu� uþ pI

ðE þ pÞu

0
B@

1
CA ¼ �e

0

rx � r
rx � ðruþ qÞ

0
B@

1
CA: ð14Þ
In these equations, the pressure tensor is P ¼ pI þ er, where r ¼ �l rxuþ ðrxuÞT � 2
drx � uI

� �
is the stress

tensor, while the heat flux is Q ¼ eq ¼ �ejrxT . In these relations, l and j are functions of U and are the so-called
viscosity and heat conductivity coefficients, see [1] and the references therein for details. In the following section,
we perform the Chapman–Enskog procedure in the context of our micro–macro decomposition.
3. A kinetic/fluid formulation of the Boltzmann equation

In this section, we show that the Boltzmann equation can be equivalently written as a system coupling a
hydrodynamic part with a kinetic part of the distribution function. This formulation is the basis of our numer-
ical method (see Section 4).
3.1. Micro–macro decomposition

Assume that f satisfies the Boltzmann equation (5). We decompose f as follows
f ¼ MðUÞ þ eg; ð15Þ

where U is linked to f by (3) and MðUÞ is the associated Maxwellian according to (4) (we take the name’
micro–macro’ decomposition from the paper by Liu and Yu [25]). When no confusion is possible, we set
MðUÞ ¼ M . Inserting decomposition (15) into (5), we obtain
otM þ v � rxM þ eðotg þ v � rxgÞ ¼
1

e
QðM þ eg;M þ egÞ:
Since Q is a bilinear and QðM ;MÞ ¼ 0, we have
QðM þ eg;M þ egÞ ¼ QðM ;MÞ þ 2eQðM ; gÞ þ e2Qðg; gÞ ¼ eLM g þ e2Qðg; gÞ;

where LM is the linearized collision operator given by
LM g ¼ 2QðM ; gÞ:

Thus, we get
otM þ v � rxM þ eðotg þ v � rxgÞ ¼ LM g þ eQðg; gÞ: ð16Þ

Now, we use a projection technique to separate the macroscopic and microscopic quantities M and g. Con-
sider the Hilbert space L2

M ¼ fu such that uM�1
2 2 L2ðRdÞg endowed with the weighted scalar product
ðu;wÞM ¼ huwM�1i:
It is well known that LM is a non-positive self-adjoint operator on L2
M and that its null space is

N ðLMÞ ¼ SpanfM ; vM ; jvj2Mg. Let PM be the orthogonal projection in L2
M onto N ðLMÞ. After easy compu-

tations in the orthogonal basis
B ¼ 1

q
M ;
ðv� uÞffiffiffiffi

T
p 1

q
M ;

jv� uj2

2T
� d

2

 !
1

q
M

( )
ð17Þ
of the space N ðLMÞ, one finds for any function u 2 L2
M the following expression of PMðuÞ:
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PMðuÞ ¼
1

q
hui þ ðv� uÞ � hðv� uÞui

T
þ jv� uj2

2T
� d

2

 !
2

d
jv� uj2

2T
� d

2

 !
u

* +" #
M :
Now, we prove the following elementary properties of PM :

Lemma 3.1. If M and g are defined as in (15) then we have
ðI �PMÞðotMÞ ¼ PMðgÞ ¼ PMðotgÞ ¼ PMðQðg; gÞÞ ¼ PMðLM gÞ ¼ 0:
Proof. Since
otM ¼
otq
q
þ v� u

T
� otuþ

jv� uj2

2T 2
� d

2T

 !
otT

" #
M

clearly belongs to N ðLMÞ (see (17)), then PMðotMÞ ¼ otM .
Moreover, thanks to (15) we have hmgi ¼ 1

e hmðf �MÞi ¼ 0 and hence hmðotgÞi ¼ othmgi ¼ 0. This implies
PM ðgÞ ¼ 0 and PM ðotgÞ ¼ 0. Finally, the conservation properties (8) of Q imply that PMðQðg; gÞÞ ¼ 0. It is
classical to deduce that LM satisfies the same properties hmLM gi ¼ 0 and hence PM ðLM gÞ ¼ 0. h

We now apply the orthogonal projection I �PM to (16) to obtain
ðI �PMÞðotM þ v � rxMÞ þ eðI �PMÞðotg þ v � rxgÞ ¼ ðI �PMÞLM g þ eðI �PMÞQðg; gÞ:

Then using Lemma 3.1, we get the following equation on g
otg þ ðI �PMÞðv � rxgÞ � Qðg; gÞ ¼ 1

e
½LM g � ðI �PMÞðv � rxMÞ�: ð18Þ
Now, taking the moments of Eq. (16) and using again Lemma 3.1, we get
othmMi þ rx � hvmMi þ erx � hvmgi ¼ 0:
Let F ðUÞ ¼ hvmMi be the flux vector of U ¼ hmMi, then the previous equation reads
otU þrx � F ðUÞ þ erx � hvmgi ¼ 0: ð19Þ

Therefore, the coupled system (18) and (19) provides a kinetic/fluid formulation of the Boltzmann equation.
This last formulation is in fact equivalent to the Boltzmann equation (5) as stated in the following proposition.

Proposition 3.1

(i) Let f be a solution of the Boltzmann equation (5) with initial data (6), and M ¼ MðUÞ its associated Max-

wellian according to (3) and (4). Then the pair ðU ; gÞ, where U ¼ hmf i and g ¼ 1
e ðf �MÞ, is a solution to

the coupled system (18) and (19) with the associated initial data
Uðt ¼ 0Þ ¼ U 0 ¼ hmf0i and gðt ¼ 0Þ ¼ 1

e
ðf0 �MðU 0ÞÞ: ð20Þ
(ii) Conversely, if ðU ; gÞ satisfies system (18) and (19) with initial data ðU 0; g0Þ such that hmg0i ¼ 0, then

f ¼ MðUÞ þ eg is a solution to the Boltzmann equation (5) with initial data f0 ¼ MðU 0Þ þ eg0 and we have

U ¼ hmf i and hmgi ¼ 0.
Proof. The proof of (i) is nothing but the construction of the coupled system (18) and (19) detailed above. For
(ii), consider ðU ; gÞ a solution of (18) and (19). We set f ¼ M þ eg, where M is the Maxwellian associated to U,
and show that f satisfies the Boltzmann equation. From (18), we have
eotg þ v � rxf ¼ LM g þ eQðg; gÞ þPMðv � rxf Þ;

and consequently
otf þ v � rxf ¼
1

e
Qðf ; f Þ þPMðv � rxf Þ þ otM : ð21Þ
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The term PMðv � rxf Þ þ otM belongs to N ðLMÞ as a sum of two elements of N ðLMÞ. On the other hand, since
Eq. (19) is equivalent to hmðPMðv � rxf Þ þ otMÞi ¼ 0, this implies that PMðv � rxf Þ þ otM is orthogonal to
N ðLMÞ. Consequently, PMðv � rxf Þ þ otM ¼ 0, and f satisfies the Boltzmann equation from (21). The prop-
erty hmgi ¼ 0 is simply obtained by applying PM to (18) and then by using the property of the initial data. h

The following proposition gives a similar result in the case of the one-dimensional ðd ¼ 1Þ BGK model.

Proposition 3.2 With the previous notations, f ¼ MðUÞ þ eg is a solution of the BGK equation (11) with initial

data (6) if and only if ðU ; gÞ satisfies the system
otg þ ðI �PMÞðvoxgÞ ¼ �
1

e
1

s
g þ ðI �PMÞðvoxMÞ

� �
; ð22Þ

otU þ oxF ðUÞ þ eoxhvmgi ¼ 0: ð23Þ

with initial data (20).

Note that in case of a boundary value problem, using the micro–macro decomposition (15) may induce
some difficulties. In particular, at boundary points, f is generally known only for incoming velocities, and
hence it may be difficult to define the macroscopic moments U in (15). In this article, we do not consider this
problem and defer the treatment of boundary conditions to a future work. We refer to [24] for such a study in
the case of the linear transport model.

3.2. Chapman–Enskog expansion and compressible Navier–Stokes equations

For a sake of clarity, we just show in this section how the classical Chapman–Enskog procedure applies to
system (18) and (19). More precisely, we simply give the results of standard calculations as in [1], adapted to
the context of our coupled kinetic/fluid formulation (18) and (19), and derive the corresponding CNS equa-
tions. This derivation is similar to the projection method used in [12].

With the previous notations and from the kinetic equation of our coupled system (18), we can write
LM g ¼ ðI �PMÞðv � rxMÞ þOðeÞ:

Now, after calculations, we obtain
ðI �PMÞðv � rxMÞ ¼ B : rxuþ ðrxuÞT �
2

d
ðrx � uÞI

� �
þ A � rxTffiffiffiffi

T
p

� �
M þOðeÞ;
where
A ¼ jv� uj2

2T
� d þ 2

2

 !
v� uffiffiffiffi

T
p and B ¼ 1

2

ðv� uÞ � ðv� uÞ
2T

� jv� uj2

dT
I

 !
:

It is known that LM is invertible on the orthogonal of its null-space. Then, we have
g ¼ L�1
M BMð Þ : rxuþ ðrxuÞT �

2

d
ðrx � uÞI

� �
þ L�1

M ðAMÞ � rxTffiffiffiffi
T
p þOðeÞ:
Inserting this expression into the macroscopic equation (19) and using classical symmetry properties ofLM , we get
otU þrx � F ðUÞ ¼ �e

0

rx � r
rx � ðruþ qÞ

0
B@

1
CAþOðe2Þ; ð24Þ
which is nothing but the CNS system of Eq. (14), up to Oðe2Þ. The rescaled viscosity tensor and heat flux are
given by
r ¼ �l rxuþ ðrxuÞT �
2

d
rx � uI

� �
; ð25Þ

q ¼ �jrxT : ð26Þ
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The coefficients l and j are the viscosity and heat conductivity coefficients that only depend on the temper-
ature, and whose general expressions can be found in [1].

In the case of the BGK model (11) for one-dimensional space and velocity variables ðd ¼ 1Þ, the compu-
tations are much simpler, and we obtain the corresponding CNS equations
ot

q

qu

E

0
B@

1
CAþ ox

qu

qu2 þ qT

Euþ qTu

0
B@

1
CA ¼ eox

0

0

joxT

0
B@

1
CA; ð27Þ
where the heat conductivity coefficient is
j ¼ s
3

2
qT :
Note that in this case, there is no diffusion term in the momentum equation.

4. Numerical approximation

Starting from the approach presented above, we are going in this section to construct a numerical approx-
imation of system (18) and (19) for the Boltzmann equation, as well as of system (22) and (23) in the case of the
BGK model. Our goal is to provide numerical approximations to these systems that give, for fixed time and
space grid steps and up to Oðe2Þ, a numerical scheme for the corresponding CNS equations. In that sense, the
so obtained numerical schemes for Boltzmann or BGK equations are ‘‘Asymptotic Preserving” for the CNS
asymptotics.

4.1. Implicit time discretization

In this first step, we present a time discretization of our coupled system (18) and (19). Space and velocity
discretizations are studied in the next section. To that purpose, we denote by Dt a fixed time step, and by tn a
discrete time such that tn ¼ nDt; n 2 N. We first develop the strategy in the case of the Boltzmann equation
(5). Let ðU nÞn and ðgnÞn be two sequences that approximate U and g respectively, that is
UnðxÞ � Uðtn; xÞ; gnðx; vÞ � gðtn; x; vÞ. The idea of our time discretization is the following. In Eq. (18), the only
term which presents a stiffness in the collision part, for small e, is e�1LM g. Hence, we take an implicit discret-
ization for this term, while the term ðI �PMÞðv � rxMÞ is still explicit. Thus, we obtain the following
discretization:
gnþ1 � gn

Dt
þ ðI �PMnÞðv � rxgnÞ � Qðgn; gnÞ ¼ 1

e
½LMn gnþ1 � ðI �PMnÞðv � rxMnÞ�; ð28Þ
where Mn ¼ MðU nÞ is the Maxwellian associated with the vector moment U n according to (9) and (10). Note
that gnþ1 is uniquely determined from (28) since the operator ðI � ðDt=eÞLMnÞ is clearly invertible (see the prop-
erties of LM mentioned in Section 3.1). In the case of the Boltzmann equation, the calculation of this inverse
will be treated in a future work. In the present paper, all the numerical tests are done with the BGK model for
which LM is diagonal and hence easily invertible.

Now, we look for the time approximation of the fluid part (19) in our system. The flux F ðUÞ at time tn is
naturally approximated by F ðU nÞ ¼ hvmMni. On the other hand, in order to have diffusive terms that are eval-
uated at time tn, the term rx � hvmgi is discretized by rx � hvmgnþ1i. Then, we have
U nþ1 � U n

Dt
þrx � F ðU nÞ þ erx � hvmgnþ1i ¼ 0: ð29Þ
Proposition 4.1

(i) The time discretization (28) and (29) of the Boltzmann equation (5) gives at the limit e! 0 a scheme which

is consistent with the Euler equation (13).
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(ii) Moreover, for small e, scheme (28) and (29) is asymptotically equivalent, up to Oðe2Þ, to an explicit time

discretization of the CNS equation (14).
Proof. The asymptotic behavior of scheme (28) and (29) is obtained similarly as in Section 3.2. Indeed, from
(29), we see that when e! 0, we obtain
Unþ1 � Un

Dt
þrx � F ðUnÞ ¼ 0;
which is a time explicit discretization of the Euler system (13). Now, we note that from the properties of LM

mentioned above, the operator ðI � ðDt=eÞLMÞ is also invertible for all e P 0 and Dt P 0. Hence, (28) yields
gnþ1 ¼ I � Dt
e
LMn

� ��1

gn � Dt
e
ðI �PMnÞðv � rxMnÞ � DtðI �PMnÞðv � rxgnÞ þ Dt Qðgn; gnÞ

� �
:

Observing that I � Dt
e LMn

	 
�1 ¼ � e
Dt L

�1
Mn þOðe2Þ, we get
gnþ1 ¼ L�1
Mn ½ðI �PMnÞðv � rxMnÞ� þ OðeÞ:
It follows that (29) can be written as
Unþ1 � Un

Dt
þrx � F ðUnÞ þ erx � hvmL�1

Mn ½ðI �PMnÞðv � rxMnÞ�i ¼ Oðe2Þ: ð30Þ
If we neglect the Oðe2Þ terms, then the same computations as in Section 3.2 show that (30) is indeed a time-
explicit discretization of the CNS equation (14). Indeed, the OðeÞ term is
rx � hvmL�1
Mn ðI �PMnÞðv � rxMnÞ½ �i ¼ Dt

0

rx � rn

rx � ðrnun þ qnÞ

0
B@

1
CA;
where rn and qn are related to Un according to (25) and (26). h

Now, applying the same time discretization to the one-dimensional ðd ¼ 1Þ BGK model, we obtain a sim-
ilar result.

Proposition 4.2 The following time discretization of the BGK equation (11)
gnþ1 � gn

Dt
þ ðI �PMnÞðv � oxgnÞ ¼ � 1

e
1

sn
gnþ1 þ ðI �PMnÞðv � oxMnÞ

� �
; ð31Þ

U nþ1 � Un

Dt
þ ox � F ðU nÞ þ eox � hvmgnþ1i ¼ 0; ð32Þ
gives at the limit e! 0 a scheme which is consistent with Euler equation (13). Moreover, it also gives up to Oðe2Þ a

scheme which is consistent with the CNS equation (27).

In all the following, we restrict ourselves to the space discretization of (31) and (32).
4.2. Space discretization

In this section, we construct a suitable space discretization of system (31) and (32) which is asymptotically
equivalent to an approximation of the one-dimensional CNS equation (27) up to Oðe2Þ. There are two main
difficulties. The first one is related to the discretization of the transport term in the left-hand side of (31) in the
kinetic regime ðe � 1Þ. Indeed, to guarantee the stability of the scheme in this regime, one has to use an upwind
discretization for this term. The second one is the accuracy of the approximation of the diffusion terms
obtained in the asymptotic regime ðe� 1Þ. Observing that such diffusive terms are due to ehvmgnþ1i via
(32), and ðI �PMnÞðvoxMnÞ via (31), we propose to discretize these terms by using central differences defined
on two staggered grids. In the following, we develop this strategy in more details.
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We consider spatial grid points xiþ1
2
, denote by xi the center of the cell ½xi�1

2
; xiþ1

2
�, and consider a uniform

space step Dx ¼ xiþ1
2
� xi�1

2
¼ xi � xi�1. Let U n

i and gn
iþ1

2
be approximations of Uðtn; xiÞ and gðtn; xiþ1

2
Þ, respec-

tively. Eq. (31) is approximated at grid point xiþ1
2
: to avoid the oscillations for transport dominated flows,

the transport term ðI �PMnÞðvoxgnÞ is approximated by a first order upwind scheme
ðI �PMnÞðvoxgnÞjx
iþ1

2

� I �Pn
iþ1

2

� � Uiþ1
2
ðgnÞ � Ui�1

2
ðgnÞ

Dx

" #
;

where
Uiþ1
2
ðgÞ ¼ vþgiþ1

2
þ v�giþ3

2
: ð33Þ
However, the transport term ðI �PMnÞðvoxMnÞ is considered as a source term and approximated by central
differences
ðI �PMnÞðvoxMnÞjx
iþ1

2

� I �Pn
iþ1

2

� �
v

Mn
iþ1 �Mn

i

Dx

� �
;

where Mn
i ¼ MðUn

i Þ and Pn
iþ1

2
is an approximation of P

M U tn;xiþ1
2

� �� � that will be given below. This leads to the
following approximation of (31)
gnþ1
iþ1

2

� gn
iþ1

2

Dt
þ I �Pn

iþ1
2

� �
vþ

gn
iþ1

2
� gn

i�1
2

Dx
þ v�

gn
iþ3

2
� gn

iþ1
2

Dx

" #
¼ � 1

e
gnþ1

iþ1
2
þ I �Pn

iþ1
2

� �
v

Mn
iþ1 �Mn

i

Dx

� �� �
:

ð34Þ

Now, the fluid equation (32) is approximated at points xi. First, the discretization of the flux oxF ðU nÞ can be
done by any classical scheme:
oxF ðU nÞjxi
�

F iþ1
2
ðU nÞ � F i�1

2
ðUnÞ

Dx
:

For instance, in the kinetic context, a natural scheme could be the first order kinetic flux vector splitting of
Deshpande–Pullin [26]:
F iþ1
2
ðU nÞ ¼ hmðvþMn

i þ v�Mn
iþ1Þi: ð35Þ
The non-equilibrium flux oxhvmgnþ1i is approximated by central differences as
oxhvmgnþ1i � 1

Dx
vm gnþ1

iþ1
2
� gnþ1

i�1
2

� �D E
:

Thus, we obtain the following approximation of (32):
U nþ1
i � U n

i

Dt
þ

F iþ1
2
ðU nÞ � F i�1

2
ðUnÞ

Dx
¼ �e vm

gnþ1
iþ1

2

� gnþ1
i�1

2

Dx

* +
: ð36Þ
Now, we investigate the formal asymptotics of the numerical scheme given by (34) and (36) when e! 0. First,
from (34) we have
gnþ1
iþ1

2
¼ � I �Pn

iþ1
2

� �
v

Mn
iþ1 �Mn

i

Dx

� �
þOðeÞ;
and then from (36)
U nþ1
i � U n

i

Dt
þ

F iþ1
2
ðU nÞ � F i�1

2
ðUnÞ

Dx
¼ e

Dx
vm I �Pn

iþ1
2

� �
v

Mn
iþ1 �Mn

i

Dx

� ���

� I �Pn
i�1

2

� �
v

Mn
i �Mn

i�1

Dx

� ���
þOðe2Þ: ð37Þ
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In order to get from (37) a scheme which is consistent with the CNS equations up to Oðe2Þ, a simple calcula-
tion shows that suitable choices of Pn

iþ1
2

are
Piþ1
2
¼ Pi þPiþ1

2
¼ PðU iÞ þPðU iþ1Þ

2
; or Piþ1

2
¼ P

Ui þ Uiþ1

2

� �
:

We summarize the above result in the following proposition.

Proposition 4.3. Consider the following time and space approximation of the BGK equation (11)
gnþ1
iþ1

2

� gn
iþ1

2

Dt
þ I �Pn

iþ1
2

� �
vþ

gn
iþ1

2
� gn

i�1
2

Dx
þ v�

gn
iþ3

2
� gn

iþ1
2

Dx

" #

¼ � 1

e
gnþ1

iþ1
2
þ I �Pn

iþ1
2

� �
v

Mn
iþ1 �Mn

i

Dx

� �� �
; ð38Þ

U nþ1
i � Un

i

Dt
þ

F iþ1
2
ðU nÞ � F i�1

2
ðUnÞ

Dx
þ e vm

gnþ1
iþ1

2

� gnþ1
i�1

2

Dx

* +
¼ 0; ð39Þ
with Mn ¼ MðU nÞ and Piþ1
2
¼ PðUiÞþPðUiþ1Þ

2
. Then

(i) in the limit e goes to zero, the moments U n satisfy the following discretization of Euler equations
Unþ1
i � Un

i

Dt
þ

F iþ1
2
ðU nÞ � F i�1

2
ðU nÞ

Dx
¼ 0; ð40Þ
(ii) scheme (38) and (39) is asymptotically equivalent, up to Oðe2Þ, to the following scheme
Unþ1
i � Un

i

Dt
þ

F iþ1
2
ðU nÞ � F i�1

2
ðU nÞ

Dx
¼ e

Dx
vm I �Pn

iþ1
2

� �
v

Mn
iþ1 �Mn

i

Dx

� �
� I �Pn

i�1
2

� �
v

Mn
i �Mn

i�1

Dx

� �� �� �
;

ð41Þ

which is a consistent approximation of the CNS equation (27). Moreover, the approximation of the diffusion term

in the right-hand side of (41) is second order in space.
Proof. First part (i) is obvious. For (ii), the asymptotical equivalence between the two schemes up to
Oðe2Þ is formally given by the above analysis. The fact that scheme (41) is consistent with the one-dimen-
sional CNS equations is just the result of a simple Taylor expansion for small Dt and Dx. The second
order approximation of the diffusion term in (41) is due to the central differences and the symmetric dis-
cretization of PMðxiþ1

2
Þ. h

Remark 4.1. In the case of coarse discretizations such that e < Dx, the upwind approximation of the equi-
librium flux oxF ðUÞ gives a numerical viscosity (of order Dx) which is larger than the order e physical vis-
cosity. This is a classical issue for convection-diffusion problems with upwind approximation of the
convection part. For not too small e, it is often sufficient to use a second order approximation of
oxF ðUÞ. In this paper, we use a simple reconstruction of the upwind flux F iþ1

2
ðU nÞ based on a flux splitting

F ¼ F þ þ F � as sum of a positive and a negative part, following the idea in [7]. A standard second order
approximation of F iþ1

2
ðU nÞ is then given by a linear piecewise polynomial:
F þðxÞ ¼ F þðxiÞ þ siðx� xiÞ; 8x 2 xi�1
2
; xiþ1

2

h i
;

where a slope limiter is introduced to suppress possible spurious oscillations near discontinuities. For example,
one can use the classical minmod slope limiter:
si ¼
1

Dx
minmodðF þðU iþ1Þ � F þðUiÞ; F þðUiÞ � F þðUi�1ÞÞ:
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Finally, the numerical flux F iþ1
2
ðUÞ is given as
F iþ1
2
ðUÞ ¼ F þi xiþ1

2

� �
� F �iþ1 xiþ1

2

� �
;

and F i�1
2
ðUÞ is reconstructed following the same way. Of course, here, the splitting form of the flux is naturally

derived from its kinetic interpretation:
F ðUÞ ¼ hvþmMðUÞi þ hv�mMðUÞi:
5. Some standard numerical methods for solving the BGK equation

In this section, we compare our approach with some already known schemes to solve the BGK equation,
regarding stability and asymptotic preserving properties. Following the notations given in Section 4, we
denote by f n

i ðvÞ an approximation of f ðtn; xi; vÞ, and by Mn
i the Maxwellian associated with f n

i according to
(9) and (10).
5.1. Explicit and semi-implicit schemes

The simplest time explicit scheme for the one-dimensional BGK equation is written as
f nþ1
i ¼ f n

i �
Dt
Dx
½vþðf n

i � f n
i�1Þ þ v�ðf n

iþ1 � f n
i Þ� þ

Dt
e
ðMn

i � f n
i Þ: ð42Þ
Because of the stiff term e�1ðMn
i � f n

i Þ, the stability of this scheme requires a CFL constraint of type Dt ¼ OðeÞ.
Under this constraint, this scheme satisfies the standard physical properties: conservation of mass, momentum
and energy, entropy dissipation, and preservation of positivity. However, it is clear that this scheme cannot be
used for small e, since it induces prohibitively small time steps. In particular, this means that scheme (42) is not
asymptotic preserving, neither for Euler, nor for CNS asymptotics.

In order to get a numerical scheme with a time step independent of e, it is necessary to find a suitable time
implicit discretization of the collision operator.

The simplest way is to make implicit the loss term �e�1f only. Hence, we obtain the following discretization
f nþ1
i ¼ e

eþ Dt
f n

i �
Dt
Dx

e
eþ Dt

½vþðf n
i � f n

i�1Þ þ v�ðf n
iþ1 � f n

i Þ� þ
Dt

eþ Dt
Mn

i : ð43Þ
Unlike the explicit scheme (42), scheme (43) does not has any e dependent CFL condition, and satisfies the
main physical properties of conservation and entropy.

However the limit scheme when e goes to 0 is not consistent with the Euler equations. Indeed, when e! 0,
(43) gives f nþ1

i ¼ Mn
i and hence f n

i ¼ M0
i for any time tn.
5.2. The splitting method and its implicit version

The splitting method is the most frequently used procedure for solving kinetic equations both by determin-
istic and stochastic methods. It consists in using a time splitting between the transport and collision parts of
the equation. The transport part is solved with the initial data f n
ot
~f þ v ox

~f ¼ 0 t 2 ½tn; tnþ1�;
~f ðt ¼ tn; x; vÞ ¼ f nðx; vÞ;

ð44Þ
and then the relaxation part is solved by using ~f ðtnþ1Þ as the initial data
ot
�f ¼ 1

e
ðMð �UÞ � �f Þ; t 2 ½tn; tnþ1�;

�f ðt ¼ tn; x; vÞ ¼ ~f ðtnþ1; x; vÞ;
ð45Þ
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and we set f nþ1 ¼ �f ðtnþ1; x; vÞ. The convection phase (44) is approximated by an explicit scheme based on a
finite difference method:
Fig. 2.
of en ¼
The re

Fig. 1.
Profile
fluid re
f
nþ1

2
i � f n

i

Dt
þ

Uiþ1
2
ðf nÞ � Ui�1

2
ðf nÞ

Dx
¼ 0; ð46Þ
where the numerical flux is given by (33) and f nþ1
2 approximates ~f ðtnþ1Þ. For the collision phase, it is proposed

in [8] to solve it exactly:
f nþ1
i ¼ e�

Dt
e f

nþ1
2

i þ 1� e�
Dt
e

� �
M

nþ1
2

i : ð47Þ
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Stationary shock: mass density as a function of the position x 2 ½�7:5; 7:5� given by scheme (AP). Profiles of q for different values
3�n for rarefied regime ðe0 ¼ 1; e1 ¼ 0:333; e2 ¼ 0:11Þ, intermediate regime ðe3 ¼ 3:7� 10�2Þ and fluid regime ðe8 ¼ 1:52� 10�4Þ.
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s of f for different values of en ¼ 3�n for rarefied regime ðe0 ¼ 1; e1 ¼ 0:333; e2 ¼ 0:11Þ, intermediate regime ðe3 ¼ 3:7� 10�2Þ and
gime ðe8 ¼ 1:52� 10�4Þ where f becomes close to a Maxwellian.
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This scheme preserves the Euler limit since it gives for e ¼ 0 the following relation
Fig. 3.
of en ¼
The re

Fig. 4.
en ¼ 3�

result
U nþ1
i � U n

i

Dt
þ

F iþ1
2
ðU nÞ � F i�1

2
ðUnÞ

Dx
¼ 0;
where F iþ1
2
ðUnÞ ¼ mUiþ1

2
ðMnÞ

D E
. This scheme is nothing but a kinetic scheme for the Euler equations. How-

ever, the CNS asymptotics cannot be preserved by this approach. Indeed, we note that since relation (47) is

conservative, then M
nþ1

2
i ¼ Mnþ1

i , and hence
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f nþ1
i �Mnþ1

i ¼ e�
Dt
e f

nþ1
2

i �Mnþ1
i

� �
:

Therefore, the difference between f and its associated Maxwellian is smaller than any power of e. In particular,
this implies that there is no correction of order e in the conservation laws. This means that the CNS asympt-
otics cannot be obtained with this scheme.

In order to obtain a CNS preserving splitting scheme, we propose the following modification. Instead of
solving the collision step exactly, we discretize it by a simple forward difference:
f nþ1
i � f

nþ1
2

i

Dt
¼ 1

e
M

nþ1
2

i � f nþ1
i

� �
: ð48Þ
In other words, this modification is equivalent to replace the coefficient e�
Dt
e by 1

1þDt=e in (47). As stated in the
following proposition, scheme (46) and (48) is now able to recover the CNS asymptotics.

Proposition 5.1. The numerical approximation of the one-dimensional BGK equation given by (46) and (48) is, up

to Oðe2Þ, equivalent to the following scheme
Unþ1
i � Un

i

Dt
þ

F iþ1
2
ðU nÞ � F i�1

2
ðU nÞ

Dx

þ e
Dx

m Uiþ1
2

Mn�1 �Mn

Dt

� �
� Ui�1

2

Mn�1 �Mn

Dt

� �� �� �
� 1

Dx
m Uiþ1

2
ðDÞ � Ui�1

2
ðDÞ

� �D E� �
: ð49Þ
The fluxes F iþ1
2

and Uiþ1
2

are given by (35) and (33). The sequence D is defined as Di ¼ Uiþ1
2
ðMn�1Þ � Ui�1

2
ðMn�1Þ.

This scheme is a consistent approximation of the CNS equation (27). Furthermore, the order e term in (49) is an

approximation of the diffusion term in (27) which is of the first order in Dx.

Proof. The consistency result is simply obtained by standard Taylor expansion at fixed e. h

Now we discuss the differences between the (AP) scheme (38),(39) obtained by the micro–macro decompo-
sition and scheme (46)–(48) based on the splitting method. First, we note that the corresponding CNS numer-
ical asymptotics (41) and (49) are not the same. Indeed, scheme (49) is a two-steps approximation (i.e. it uses
U nþ1, Un, and U n�1). Moreover, the diffusion is discretized by a second order approximation in space in (41),
while it is of first order only in (49). Note also that the approximation of the diffusion term in (49) induces an
error of the order of Dt. No such error appears for scheme (41).
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xpÞ, and (AP).
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6. Numerical results

In this section, we present several numerical tests in the case of the one-dimensional BGK model. Our aim is
to illustrate the efficiency of scheme (38) and (39) and to show its asymptotic equivalence up to Oðe2Þ to
scheme (41). We also check the consistency of (41) with a standard approximation of the one-dimensional
CNS equation (27). Finally, the behavior of our schemes in the CNS regime is analyzed by comparing them
with the following standard approximation of the CNS equations:
Fig. 6.
(fluid r
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i � U n
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ðUnÞ � F i�1

2
ðU nÞ

Dx
¼ 3e

2Dx2

0

0
piþpiþ1

2
ðT iþ1 � T iÞ � pi�1þpi

2
ðT i � T i�1Þ

0
B@

1
CA: ð50Þ
For clarity, we now fix some notations. We refer to scheme (38) and (39) obtained by the micro–macro decom-
position as (AP), to the semi-implicit time splitting scheme given by (46) and (48) as ðSiÞ, and to the time split-
ting scheme with exact collision phase given by (46) and (47) as ðSeÞ. The CNS asymptotics (41) of scheme
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egime, bottom) obtained by schemes (AP1) and (NS).
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(AP) is referred to as (AP1). The numerical scheme (40) for Euler equations is referred to as ðEÞ. We recall that
this scheme is also the limit of the scheme (AP) when e goes to 0. For these two schemes, the numerical con-
vective fluxes oxF ðUÞ are approximated by using the kinetic flux vector splitting (35). Finally, the standard
scheme (50) for the CNS equations is referred to as (NS).

For all the schemes used in this section, the integrals with respect to the velocity are discretized by simple
rectangle quadratures.

6.1. Stationary shock problem

We study in this section the one-dimensional stationary shock wave problem. The initial data is given by
f ð0; x; vÞ ¼ M ½q; u; T � where the macroscopic quantities are left and right data connected by the classical Ran-
kine–Hugoniot relations:
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Fig. 7.
(botto
q ¼ 1; u ¼ 1:2; T ¼ 0:1 for x < 0;

q ¼ 1:65; u ¼ 0:72; T ¼ 0:4 for x > 0:
This corresponds to a shock Mach number of 2.2. The computational domain in space is ½�7:5; 7:5� discretized
with 200 cells, while the velocity space is truncated with the interval ½vmin; vmax� ¼ ½�3; 4� with 100 discrete
points.

Our first purpose is to illustrate the behavior of scheme (AP) at different regimes. For different values of e
ðe ¼ 3�n; n P 0Þ, we first plot the distribution function within the shock ðx ¼ 0Þ in Fig. 1. We also plot the
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density, the mean velocity, and the temperature as functions of x 2 ½�7:5; 7:5� in Figs. 2–4. In each figure, we
add the corresponding results obtained with the Euler limit scheme ðEÞ. These figures show that scheme (AP)
is stable in the limit e ¼ 0 and converges to the correct Euler limit.

To check the behavior of scheme (AP) in the kinetic regime, we compare in Fig. 5 the density obtained for
e ¼ 1 with scheme (AP) and that obtained with the simple explicit discretization (42) of the BGK equation
(denoted by ðBGK expÞ in the figure). As expected, both schemes give the same results.

Now we illustrate the fact that the CNS asymptotics (AP1) of scheme (AP) is indeed an approximation of
the CNS equations (see the second assertion of Proposition (4.3)). The density obtained with scheme (AP1) is
compared for e ¼ 1 (kinetic regime), and e ¼ 1:7� 10�5 (fluid regime) to the result obtained with the standard
approximation (NS) of the CNS equations. In Fig. 6 we observe, as expected, that schemes (AP1) and (NS)
give the same density profiles.

Then for schemes (AP) and ðSiÞ, we numerically investigate the difference between their results and the
Euler limit. We show that it is of the order of e. We plot in Fig. 7 the relative differences between the densities,
the velocities, and the temperatures, obtained with schemes (AP) and ðEÞ, and with ðSiÞ and ðEÞ. As expected
we observe that these profiles are lines with a slope equal to 1.

Finally, we numerically check that (AP) is asymptotically equivalent, up to Oðe2Þ, to scheme (AP1) for CNS
equations at small e. In Fig. 8, we plot the relative difference between the densities, the velocities, and the tem-
peratures, obtained with schemes (AP) and (AP1). As expected, we obtain a line with a slope equal to 2. This is
in very good agreement with the formal analysis given in the previous sections: it confirms that scheme (AP)
accurately preserves the compressible Navier–Stokes asymptotics up to Oðe2Þ.
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6.2. Sod problem

In this section, we consider the classical Sod problem with the following initial data for the density, mean
velocity and temperature
Fig. 10
en ¼ 2�

e14 ¼ 6

Fig. 9.
t ¼ 0:1
fluid re
ðq; u; T Þ ¼
ð1; 0; 1Þ; 0 6 x 6 0:5;

ð0:125; 0; 0:1Þ; 0:5 < x 6 1:
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gime ðe10 ¼ 9:7� 10�4; e14 ¼ 6:10� 10�5Þ where f becomes close to a Maxwellian.
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The distribution function is initialized with the Maxwellian states corresponding to this data. The space do-
main ½0; 1� is discretized using 100 grid points, and the velocity domain ½�4:5; 4:5� is discretized with 100
points.

First, we consider scheme (AP). For different values of e, we plot at time t ¼ 0:14 and position x ¼ 0:5 the
distribution function in Fig. 9. We also plot in Figs. 10–12, at the same time and the same values of e, the
density, the velocity and the temperature. Again, these figures show that scheme (AP) is stable in the limit
e ¼ 0 and converges to the correct Euler limit.

Finally, the differences between schemes that preserve the CNS asymptotics (i.e., (AP) and ðSiÞ) and a
scheme that does not (i.e. ðSeÞ) are shown by plotting in Fig. 13 the rescaled heat flux
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Fig. 11. Sod problem: mean velocity as a function of x 2 ½0; 1� at time t ¼ 0:14, given by scheme (AP). Profiles for different values of
en ¼ 2�n for rarefied regime ðe0 ¼ 1; e5 ¼ 3:125� 10�2Þ, transition regime ðe8 ¼ 3:90� 10�3Þ and fluid regime ðe10 ¼ 9:7� 10�4; e14 ¼
6:10� 10�5Þ. The result of scheme ðEÞ is also shown.
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for rarefied regime ðe0 ¼ 1; e5 ¼ 3:125� 10�2Þ, transition regime ðe8 ¼ 3:90� 10�3Þ and fluid regime ðe10 ¼ 9:7� 10�4; e14 ¼ 6:10� 10�5Þ.
The result of scheme ðEÞ is also shown.
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q ¼ 1
e
jv�uj2

2
ðv� uÞf

D E
. This quantity is obtained by scheme (AP), ðSiÞ, and ðSeÞ and is compared to its theoret-

ical asymptotic value �joxT obtained in scheme (NS), for e ¼ 2� 10�3, e ¼ 10�3 and e ¼ 2� 10�4, at time
t ¼ 0:16. The time step is Dt ¼ 2� 10�3. According to the theory given in Sections 4 and 5, q should be of
order 1 for (NS) and for the asymptotic preserving schemes (AP) and ðSiÞ, while it should be of order
e�Dt=e=e for ðSeÞ. Indeed, we observe in Fig. 13 that the heat flux given by ðSeÞ is smaller than the one given
by the other schemes, and even much smaller for e ¼ 10�4. Comparatively, scheme (AP) gives a heat flux which
becomes close to that given by the CNS discretization (NS) when e decreases. Finally, our modified splitting
scheme ðSiÞ is also close to (NS), but it shows some oscillations that are probably due to the complex discret-
ization of the diffusion term in (49).

7. Conclusion

In this paper, we have presented a numerical method for kinetic Boltzmann equations which preserves
the CNS asymptotics at small Knudsen numbers. The key ingredient in this method is to use an equiv-
alent micro–macro formulation of the kinetic equation. This formulation has been discretized with a
numerical scheme which is uniformly stable with respect to the Knudsen number and turns out to be effi-
cient in both kinetic and fluid regimes. This has been illustrated by several numerical tests for the one-
dimensional BGK model.

We have also presented a simple modification of a classical splitting approach for the BGK equation which
leads to the same asymptotic preserving property (for the CNS asymptotics). We mention that, at least for a
particular class of quadratic Boltzmann operators, a similar modification on the so-called Wild sums [14]
could be made to obtain CNS asymptotic preserving schemes using splitting techniques. This work is currently
under consideration [2].

However, the method based on the micro–macro decomposition seems to be more natural and should more
easily extend to other collision operators (Boltzmann, Landau, etc.). This is the subject of a future work. The
treatment of boundary conditions in the micro–macro decomposition is also under consideration. Moreover,
we mention that this approach has already been applied to obtain asymptotic preserving schemes in the dif-
fusion limit for linear kinetic equations [24].
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